G = C3×S32⋊C4 order 432 = 24·33
direct product, non-abelian, soluble, monomial
Aliases:
C3×S32⋊C4,
S32⋊C12,
C6.19S3≀C2,
C6.D6⋊4C6,
(C32×C6).1D4,
C33⋊2(C22⋊C4),
(C2×S32).C6,
(C3×S32)⋊1C4,
(S32×C6).1C2,
C2.1(C3×S3≀C2),
(C2×C32⋊C4)⋊1C6,
(C6×C32⋊C4)⋊2C2,
C3⋊S3.2(C3×D4),
(C3×C3⋊S3).5D4,
(C3×C6).1(C3×D4),
C32⋊(C3×C22⋊C4),
C3⋊S3.2(C2×C12),
(C3×C6.D6)⋊7C2,
(C6×C3⋊S3).4C22,
(C3×C3⋊S3).4(C2×C4),
(C2×C3⋊S3).4(C2×C6),
SmallGroup(432,574)
Series: Derived ►Chief ►Lower central ►Upper central
Generators and relations for C3×S32⋊C4
G = < a,b,c,d,e,f | a3=b3=c2=d3=e2=f4=1, ab=ba, ac=ca, ad=da, ae=ea, af=fa, cbc=fdf-1=b-1, bd=db, be=eb, fbf-1=ede=d-1, cd=dc, ce=ec, fcf-1=e, fef-1=c >
Subgroups: 652 in 132 conjugacy classes, 26 normal (22 characteristic)
C1, C2, C2, C3, C3, C4, C22, S3, C6, C6, C2×C4, C23, C32, C32, Dic3, C12, D6, C2×C6, C22⋊C4, C3×S3, C3⋊S3, C3×C6, C3×C6, C4×S3, C2×C12, C22×S3, C22×C6, C33, C3×Dic3, C3×C12, C32⋊C4, S32, S32, S3×C6, C2×C3⋊S3, C62, C3×C22⋊C4, S3×C32, C3×C3⋊S3, C32×C6, C6.D6, S3×C12, C2×C32⋊C4, C2×S32, S3×C2×C6, C32×Dic3, C3×C32⋊C4, C3×S32, C3×S32, S3×C3×C6, C6×C3⋊S3, S32⋊C4, C3×C6.D6, C6×C32⋊C4, S32×C6, C3×S32⋊C4
Quotients: C1, C2, C3, C4, C22, C6, C2×C4, D4, C12, C2×C6, C22⋊C4, C2×C12, C3×D4, C3×C22⋊C4, S3≀C2, S32⋊C4, C3×S3≀C2, C3×S32⋊C4
Permutation representations of C3×S32⋊C4
►On 24 points - transitive group
24T1317Generators in S
24
(1 6 19)(2 7 20)(3 8 17)(4 5 18)(9 23 13)(10 24 14)(11 21 15)(12 22 16)
(2 20 7)(4 18 5)(10 24 14)(12 22 16)
(2 12)(4 10)(5 24)(7 22)(14 18)(16 20)
(1 6 19)(3 8 17)(9 13 23)(11 15 21)
(1 11)(3 9)(6 21)(8 23)(13 17)(15 19)
(1 2 3 4)(5 6 7 8)(9 10 11 12)(13 14 15 16)(17 18 19 20)(21 22 23 24)
G:=sub<Sym(24)| (1,6,19)(2,7,20)(3,8,17)(4,5,18)(9,23,13)(10,24,14)(11,21,15)(12,22,16), (2,20,7)(4,18,5)(10,24,14)(12,22,16), (2,12)(4,10)(5,24)(7,22)(14,18)(16,20), (1,6,19)(3,8,17)(9,13,23)(11,15,21), (1,11)(3,9)(6,21)(8,23)(13,17)(15,19), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)>;
G:=Group( (1,6,19)(2,7,20)(3,8,17)(4,5,18)(9,23,13)(10,24,14)(11,21,15)(12,22,16), (2,20,7)(4,18,5)(10,24,14)(12,22,16), (2,12)(4,10)(5,24)(7,22)(14,18)(16,20), (1,6,19)(3,8,17)(9,13,23)(11,15,21), (1,11)(3,9)(6,21)(8,23)(13,17)(15,19), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24) );
G=PermutationGroup([[(1,6,19),(2,7,20),(3,8,17),(4,5,18),(9,23,13),(10,24,14),(11,21,15),(12,22,16)], [(2,20,7),(4,18,5),(10,24,14),(12,22,16)], [(2,12),(4,10),(5,24),(7,22),(14,18),(16,20)], [(1,6,19),(3,8,17),(9,13,23),(11,15,21)], [(1,11),(3,9),(6,21),(8,23),(13,17),(15,19)], [(1,2,3,4),(5,6,7,8),(9,10,11,12),(13,14,15,16),(17,18,19,20),(21,22,23,24)]])
G:=TransitiveGroup(24,1317);
54 conjugacy classes
class | 1 | 2A | 2B | 2C | 2D | 2E | 3A | 3B | 3C | ··· | 3H | 4A | 4B | 4C | 4D | 6A | 6B | 6C | ··· | 6H | 6I | 6J | 6K | 6L | 6M | 6N | 6O | 6P | 6Q | ··· | 6V | 12A | 12B | 12C | 12D | 12E | ··· | 12J | 12K | 12L | 12M | 12N |
order | 1 | 2 | 2 | 2 | 2 | 2 | 3 | 3 | 3 | ··· | 3 | 4 | 4 | 4 | 4 | 6 | 6 | 6 | ··· | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | ··· | 6 | 12 | 12 | 12 | 12 | 12 | ··· | 12 | 12 | 12 | 12 | 12 |
size | 1 | 1 | 6 | 6 | 9 | 9 | 1 | 1 | 4 | ··· | 4 | 6 | 6 | 18 | 18 | 1 | 1 | 4 | ··· | 4 | 6 | 6 | 6 | 6 | 9 | 9 | 9 | 9 | 12 | ··· | 12 | 6 | 6 | 6 | 6 | 12 | ··· | 12 | 18 | 18 | 18 | 18 |
54 irreducible representations
Matrix representation of C3×S32⋊C4 ►in GL4(𝔽7) generated by
G:=sub<GL(4,GF(7))| [4,0,0,0,0,4,0,0,0,0,4,0,0,0,0,4],[3,3,6,1,5,1,4,6,5,1,6,6,1,5,3,5],[6,5,2,6,4,5,3,2,0,0,1,0,6,6,1,4],[4,2,2,2,2,3,2,4,5,5,6,3,0,2,2,2],[5,6,6,2,1,6,5,4,6,2,3,3,2,3,3,2],[3,4,4,0,4,1,0,4,4,3,4,3,3,6,3,6] >;
C3×S32⋊C4 in GAP, Magma, Sage, TeX
C_3\times S_3^2\rtimes C_4
% in TeX
G:=Group("C3xS3^2:C4");
// GroupNames label
G:=SmallGroup(432,574);
// by ID
G=gap.SmallGroup(432,574);
# by ID
G:=PCGroup([7,-2,-2,-3,-2,-2,-3,3,197,176,4037,3036,362,1189,1203]);
// Polycyclic
G:=Group<a,b,c,d,e,f|a^3=b^3=c^2=d^3=e^2=f^4=1,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,a*f=f*a,c*b*c=f*d*f^-1=b^-1,b*d=d*b,b*e=e*b,f*b*f^-1=e*d*e=d^-1,c*d=d*c,c*e=e*c,f*c*f^-1=e,f*e*f^-1=c>;
// generators/relations